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The two-dimensional inviscid transonic flow about a circular cylinder is investigated. 
To do this, the Euler equations are integrated numerically with a time-dependent 
technique. The integration is based on an high-resolution finite volume upwind 
method. 

Time scales are introduced and the flow at very short, short and large times is 
studied. Attention is focused on the behaviour of the numerical solution at large 
times, after the breakdown of symmetry and the onset of an oscillating solution have 
occurred. This solution is known to be periodic at Mach number between 0.5 and 
0.6. 

At higher speed, however, a richer behaviour is observed. As the Mach number is 
increased from 0.6 to 0.98 the numerical solution undergoes two transitions. Through 
a first one the periodical, regular flow enters a chaotic, turbulent regime. Through 
the second transition the chaotic flow comes back to an almost stationary state. The 
flow in the chaotic and in the almost stationary regimes is investigated. A numerical 
conjecture for the behaviour of the solution at large times is advanced. 

1. Introduction 
In this paper the two-dimensional inviscid transonic flow about a circular cylinder, 

as shown in figure 1, is investigated numerically. 
As explained in Botta (1984), this flow is still subsonic for a free stream Mach 

number (M,) of 0.38. At some critical value M z  about 0.4 the maximal value of the 
Mach number, reached at the top of the cylinder, becomes one. The flow is called 
transonic for values of M, between MZ and one. This is the range of speeds which 
is investigated here. 

The transonic flow about a circular cylinder has been the subject of many investi- 
gations, both numerical and experimental. 

Numerical simulations have been made, for the inviscid case, by Salas (1983), 
Buning & Steger (1982), Pandolfi & Larocca (1989), di Mascio (1992) and by the 
many contributors to the GAMM workshop at Rocquencourt (Dervieux et al. 1989). 
Pandolfi & Larocca presented a very detailed and exhaustive analysis of the flow at 
M ,  = 0.5 and M ,  = 0.6 and paved the way to the understanding of the instabilities 
which characterize the flow in the transonic range (see $2). The viscous transonic flow 
at high Reynolds numbers has been investigated, numerically, by Shang (1982) and 
Ishii & Kuwahara (1982). 

Experimental studies of the transonic flow past a cylinder have been made by 
Dyment (1979), Rodriguez (1984) and Desse & Pegneaux (1990). The high-speed 
visualizations of Dyment, at Reynolds numbers of about lo5, clearly show the 
existence, for certain values of M,, of two substantially different flows. This happens 
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FIGURE 1. Inviscid flow about a circular cylinder at Mach 0.85: entropy contour lines. 

FIGURE 2. Circular cylinder at M ,  = 0.5: (a)  Mach number and 
(b )  entropy deviation contour lines; 64 x 256 cells. t = 133. 

for M ,  = 0.8 and for M ,  = 0.98. In the first case both flows are unsteady. For 
M ,  = 0.98 one flow is unsteady, the other one steady. 

In the following section the transonic flow about a circular cylinder is discussed 
in some more detail. I will present some of the results established by Pandolfi & 
Larocca and focus attention on the main topics of the numerical investigation. In 
$3 the discretization and the initial and boundary conditions, together with some 
peculiarities of the implementation of the high-resolution method described in Botta 
(1984), are discussed. Section 4 deals with the interpretation of the numerical results. 
Time scales are introduced and the behaviour of the numerical solution for very short, 
short and large times is discussed. At the end of this section a numerical conjecture 
on the behaviour of the transonic flow at large times is advanced. The last section 
summarizes some conclusions. 

2. The problem 
Let me briefly recall a basic feature of the subsonic flow about the cylinder at 

M ,  = 0.38. As explained in Botta (1994) this flow is steady and symmetric with 
respect to the direction of the undisturbed flow, x. Consider figure 2. In (a )  a picture 
of the transonic flow at M, = 0.5 is shown in terms of Mach number contour lines. 
In (b) the contour lines of the entropy deviation are represented. One can clearly see a 
supersonic region gS (between the surface of the cylinder and the thick isoline M = 1) 
around the top of the cylinder. On the lee side of this region the flow returns to the 
subsonic regime through a radial shock wave Y. The shock causes total pressure 
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losses that prevent the flow wetting the cylinder from reaching the rear stagnation 
point on the symmetry axis. The flow separates at the point gS and a circulating 
bubble %? forms in the rear part of the cylinder. 

Like the flow at M ,  = 0.38, the flows at M,  = 0.5 and at M ,  = 0.6 were among the 
problems proposed in the GAMM workshop at Rocquencourt. The numerical results 
presented for the M ,  = 0.38 case in this workshop were in good agreement with each 
other. The ones for the M ,  = 0.5 and the M ,  = 0.6 cases, however, were in some 
way disturbing: different numerical methods designed to compute stationary solutions 
of the Euler equations produced circulating bubbles of substantially different sizes or 
did not converge. On the other hand, methods based on the true time integration of 
the full Euler equations provided very similar unsteady solutions (contributions C17, 
C18 and C20 in Dervieux et al. 1989) both for the flow at M ,  = 0.5 and for the flow 
at M ,  = 0.6. 

A deeper contribution to the understanding of the behaviour of the transonic flow 
about the cylinder was given by Pandolfi & Larocca (1989). They used a second-order 
finite difference time-dependent method. The method is based on an upwind hybrid 
formulation of the Euler equations and consists of a blend between the A-scheme of 
Moretti (Moretti 1979, 1987) and the flux difference splitting of Pandolfi (Pandolfi 
1984). 

For both flows ( M ,  = 0.5 and M ,  = 0.6) they found that the symmetric solution 
with a radial shock followed by inviscid separation and by the circulating bubble 
was unsteady. Periodic oscillations of the shock position were coupled with a cyclic 
variation of the size of the bubble. For the flow at M ,  = 0.6 they also observed the 
recurrent detachment of the circulating bubble and its advection in the wake. 

Pandolfi & Larocca made their first computations on a half-cylinder with a flat wall 
aligned with the x-axis. This is equivalent to a computation over the full cylinder with 
the enforcement of a symmetry condition on the cells lying on the two sides of the 
x-axis. As they removed the wall and began to compute the flow over the full cylinder 
they observed, both in the M ,  = 0.5 and in the M ,  = 0.6 cases, that the periodical 
symmetric solution is unstable. At some critical time the symmetry of theflow breaks 
down and, after a short transient, an asymmetric periodic flow is established. 

A short sequence of the flow at M ,  = 0.5 over the full cylinder after the onset of 
the asymmetric periodic solution is shown in figure 3. Two radial shocks on the two 
sides of the cylinder oscillate alternately shedding eddies into a wake whose structure 
is similar to the well-known von Karman vortex street observed in the incompressible 
viscous case at low Reynolds numbers. 

The transition to the asymmetric periodic flow can be clearly seen in the drag and 
lift coefficient histories shown on figure 4(a, c). For times between zero and about 
35 the flow is essentially symmetric. The lift coefficient (CL) is about zero and the 
drag coefficient (CD) tends toward a value of about 0.15. At t m 35 a first oscillation 
in the CL diagram becomes visible (figure 4c). At the same time a sudden increase 
of the drag coefficient is observed. For t > 50 the asymmetric periodic flow is fully 
developed. The mean value of the drag coefficient is now 1.2, eight times higher than 
in the symmetric case! The lift coefficient exhibits wide oscillations between values 
of about -2.4 and 2.4. On figure 4(b, d) the spectra of drag and lift coefficients for 
t E [200,600] are reported. The flow is perfectly periodic: the CD diagram consists of 
two main frequencies while the lift coefficient is characterized by a single oscillation 
whose frequency is exactly one half of the first frequency of the drag coefficient 
diagram. The unsteady behaviour of the flow at M ,  = 0.5 can also be described by 
means of the CD, CL diagram of figure 5. In this diagram the points xi = cD(ti), 
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FIGURE 4. Circular cylinder at M,,, = 0.5: (a, b) drag 

and (c,  d )  lift coefficients diagrams and spectra. 

yi = CL(?) are marked with a dot. The discrete values of the time, ti, are chosen on 
the interval [200,600] to avoid the representation of the initial transient of the flow. 
The ti are equally spaced with ti+' - ti = 0.02. 

Notice that a steady solution is represented in this diagram by a single point and 
a periodic solution of period T by the closed orbit 
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FIGURE 5. 
C D  

Circular cylinder at M ,  = 0.5: CD, CL diagram for t E [200,600]. 

M,  < A4: 
M,  = 0.5 

0 steady, symmetric, stable 
o periodic, symmetric, unstable 
0 periodic, asymmetric, stable 

TABLE 1. The dependence of behaviour of the flow about a circular cylinder 
on the control parameter M,. 

with CD(to) = CD(to + T )  and CL(to) = CL(to + T ) .  In the symmetric case a periodic 
(stationary) orbit is simply a segment (point) lying on the x-axis. The numerical 
results sketched above are in perfect agreement with the ones originally reported 
in Pandolfi & Larocca (1989). They have been confirmed by the computations of 
other authors, see for instance Di Mascio (1992). These numerical results show that 
the flow about the cylinder undergoes, as M ,  grows above the critical value M g ,  a 
bifurcation. Such a behaviour is sketched in table 1. Looking at table 1 two main 
questions arise: 

what is the reason for the instability of the symmetric periodic flow at M ,  = OS? 
what is the behaviour of the flow for M ,  > O S ?  

In 94 I will answer these questions. To do this, however, a discussion of the initial 
and boundary conditions and of the discretization is required. This is provided in the 
next section. 

3. Initial and boundary condition; discretization 
When Pandolfi & Larocca investigated the full cylinder, they started their com- 

putations with symmetrical initial conditions. After one integration step, however, 
the numerical solution was no longer exactly symmetric. Owing to the computer 
arithmetic a slight asymmetry (of the same magnitude as the round-off error of the 
machine) had been introduced. Remember that a + b + c = a + c + b does not always 
hold in computer arithmetic. Thus the cell averages on symmetric cells must be 
updated on the basis of symmetric operands and of the same sequence of operations 
in order to conserve symmetry. 

Such asymmetry has no effect on stable flows, as the results shown in Pandolfi 
& Larocca (1989) for the flow at M ,  = 0.38 make clear. In the flow at M ,  = 0.5 
such asymmetry was confined, up to a critical time, to the last significant digit. Then, 
suddenly, the asymmetry grew and the transition to the asymmetrical periodical 
solution took place. This also explains why they used the 'half' cylinder with a flat 
wall along the x-axis to compute the symmetric unsteady solution. 
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FIGURE 6. Circular cylinder: space discretization of 32 x 128 cells; in the perturbed initial 
condition only the density in the last two cells (arrows) has been altered by lop6 (basic value is 1). 

In my numerical computations I have followed a different, but fundamentally 
equivalent approach. The high-resolution finite volume method described in Botta 
(1994) has been implemented in such a way that, for symmetrical initial data, the 
numerical solution is symmetric for any time. This has been done to avoid any 
numerical source of asymmetry like that mentioned above. The code can then be 
used to investigate the stability of a flow in the same spirit as in a classical stability 
analysis : by slightly perturbing the (symmetric) initial condition. 

Therefore for any given value of the M ,  two initial conditions have been defined. 
The first one is symmetric and consists of the uniform flow at Mach number equal 
to M ,  and pressure and density equal to one. The velocity is aligned with the x-axis: 

i = 1 ,  ..., ncl, j =  1, , nc2. 

The second initial condition is obtained from the first one by asymmetrically per- 
turbing the values of the first component of f iy>c2 and fi:&2 by 
respectively. These are the values of the density in the two cells shown in figure 6, 
by the arrows. In the numerical investigation of the flow about the cylinder at a 
given M ,  a first computation is done with the symmetrical initial condition. This 
computation provides a symmetrical numerical solution (either steady or unsteady). 

Then a second computation is done starting with the perturbed initial data. For 
both computations the same code, the same discretization and the same boundary 
conditions are used. 

The characteristic based boundary conditions are those described in detail in Botta 
(1994). 

The space discretizations consist of polar grids of 32 x 128 (DO), 64 x 256 (Dl) and 
128 x 512 ( D 2 )  cells in the radial and in the circumferential directions respectively. 
The 32 x 128 grid is the one prescribed in Dervieux et al. (1989) and shown in figure 6. 
Each grid is equally spaced in the circumferential direction and stretched in the radial 
direction. The stretching is such that the cells at the surface of the cylinder are almost 
squares, see Botta (1994). Almost all the numerical results to be discussed in the next 
section have been computed with the mesh D1 or D2. 

In some of the computations the time step has been kept constant. In these cases 
the value of the CFL number was always below 0.8, depending on the M ,  and, of 
course, on the time. In other computations the CFL number was set equal to 0.9 and 
the global time step allowed to be variable as the flow develops. 

and 
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FIGURE 7. Circular cylinder at (a) M ,  = 0.5 and (b) M ,  = 0.98; drag coefficient diagram 
during the first 50 s of the numerical computation. 

4. Numerical results and their interpretation 
4.1. Time scales 

Consider figure 7 .  In part ( a )  the drag coefficient history over the first 50st of 
the numerical computation has been shown for the flow at M ,  = 0.5. The same 
diagram has been traced for the flow at M ,  = 0.98 in figure 7(b) .  Both results have 
been obtained with the perturbed initial condition so that, at a critical time t", the 
symmetry of the flow breaks down. In both cases, three time intervals can be naturally 
introduced. 

A first interval, between t = 0 and t = tS,  is characterized by a fast decrease of 
the drag coefficient in time. This interval will be called, in the following, the interval 
of very short times. During the second time interval, for t between ts and t", the 
drag coefficient is almost constant or slowly oscillates toward some mean value. The 
interval [ts,tC'] is designated the interval of short times. At t = ter the breakdown of 
symmetry occurs. The behaviour of the flow for t > tC' will be referred to as the large 
times behaviour. 

The drag coefficient histories to be shown in the next sections clearly indicate that 
the time scales of very short, short and large times can be introduced for the flows 
at M ,  between 0.5 and 0.98 too. The characteristic time tS is more or less the same 
and about 4. The critical time tCr increases from values of about 25 for M ,  = 0.98 to 
values of about 35 for M ,  = 0.5. In the next three sub-sections the behaviour of the 
flow for very short, short and for large times will be presented and discussed. 

4.2. Very short times 
For very short times the behaviour of the flow about the cylinder does not depend, 
qualitatively, on the value of M,. The flow is ruled by the dynamics promoted by 
the initial condition. As seen in 53, apart from the small asymmetrical perturbation, 

t Notice that the governing equations have not been written in a non-dimensional form. Thus 
the values of time are in seconds. Because of the unit values of density and pressure, however, such 
times should be divided by a factor about 280 to get the typical times for the evolution at standard 
conditions (pm = 101325 Pa and p ,  = 1.29 kgmP3). 
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FIGURE 8. Circular cylinder at M ,  = 0.85: entropy deviation contour lines: the maxima are in the 
cores of the vortices at the rear part of the cylinder; t E [0.075,1.875]; 128 x 512 cells. 

this is essentially the uniform flow at Mach number equal to M,. Clearly such a 
flow does not match the boundary condition at the surface of the cylinder. Therefore 
at t = 0 a shock is generated in front of the cylinder to force the flow to comply 
with the boundary condition. This shock is clearly visible in figure 8(a, b). At the 
rear part of the cylinder a rarefaction wave is generated. Such a wave should not be 
seen in figure 8, where the entropy deviation is shown. Therefore the contour lines 
appearing on the rear part of the cylinder in the first two frames of figure 8 are due 
to the errors introduced by the discretization. Both waves travel outwards and vanish 
leaving a strong pressure gradient between the front and the rear of the cylinder: a 
cross-flow sets on. Such a flow becomes supersonic about the top of the cylinder and 
over expands. At the rear of the cylinder the flow re-compresses through a strong 
radial shock on both sides of the cylinder. The value of the Mach number in front of 
the shock is between 2 and 5 depending on the value of M,. The beginning of the 
formation of the radial shocks can be seen in figure 8(c). The flow behind the radial 
shocks is highly rotational and separates after a short distance from the root of the 
shocks. In fact the vorticity of the flow in the wake of the radial shock would be, in 
a stationary flow, roughly proportional to the inverse of the radial extension of the 
shock itself as can be argued from Crocco’s theorem. 

As time increases, the pressure on the rear part of the cylinder grows (remember 
that the drag coefficient decreases monotonically for very short times) and pushes the 
pair of radial shocks upstream. This can be clearly seen in figure 8(d-f). 

Together with the radial shocks the separation point also moves upstream with 
a slower speed, however. This is because the shock becomes weaker as it travels 
upstream (where the speed of the flow is lower). Therefore the total pressure losses 
across the shock become less severe and the distance between the root of the shock 
and the separation point increases. The vorticity generated by the curved radial 
shocks becomes visible in the two counter-rotating vortices at the rear of the cylinder. 

At t = tS the radial shocks have almost reached an equilibrium position and the 
decrease of the drag coefficient slows down. The flow enters a new regime which is 
described in the next section. 
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FIGURE 9. Circular cylinder at M ,  = 0.85: Kelvin-Helmholtz instability at t about tS (a-d) and 
breakdown of symmetry at t about t" (e-h); entropy deviation contour lines: the maxima are in 
the cores of the main vortices at the rear part of the cylinder; 128 x 512 cells. 

4.3. Short times 
The behaviour of the flow for short times exhibits a weak qualitative dependence on 
the value of M,. During this time interval the control parameter M ,  begins to shape 
the local features of the flow and local instabilities occur for certain values of M,. 
The breakdown of symmetry which takes place at the critical time tCr, however, is the 
consequence of a global instability of the flow which does not depend, qualitatively, 
on M,. 

In the following the evolution of the flow between t = tS and t = tCr and the 
breakdown of symmetry are described for the case M ,  = 0.85. Consider figure 8(f) 
again. That was the flow at M ,  = 0.85 at t = 1.875. Between t = 1.875 and t about 
tS the two counter-rotating vortices are stretched in the direction of the x-axis and 
the radial shocks and the separation points approach an almost steady position. The 
separation line now extends downstream over a length of about two diameters as can 
be seen from figure 9(a).  Such a separation line is a contact discontinuity as well as 
a slip line and undergoes, for t > tS ,  a Kelvin-Helmholtz instability. This can be seen 
in figure 9(a-d). The Kelvin-Helmholtz instability of the separation line is a local 
effect of small amplitude and does not have any direct influence on the breakdown of 
symmetry. The instability, which has been observed for other values of M ,  as well, 
could be a reason for the unsteadiness, originally observed by Pandolfi & Larocca 
(1989), of the flow over the half-cylinder at M ,  = 0.5 and at M ,  = 0.6. As the time 
increases between tS and tCr, the vortices in the wake of the cylinder at M ,  = 0.85 are 
stretched and become more and more elongated. 

The Kelvin-Helmholtz instability of the separation line weakens and an almost 
steady, plane flow, in the sense that v is about zero and u w u(y), is established in 
the wake of the cylinder. It is not clear whether the weakening of the instability is 
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FIGURE 10. Circular cylinder at M ,  = 0.85: (a )  vorticity contour lines and ( b )  u-velocity and 
(c) vorticity distributions in the wake (x about 4); 128 x 512 cells. 

just a numerical effect or not. Clearly as the stratified flow in the circulating bubble 
folds and folds and as the bubble is stretched downstream (where the discretization 
is rougher than in the vicinity of the cylinder), the numerical dissipation tends to 
smooth the flow in the wake of the cylinder. Such a flow, represented in figure 9(e) is 
globally unstable. The instability can be explained as follows. Consider figure 10. In 
part (a) the contour lines of the vorticity of the flow, o, are shown. The distributions 
of u and o along a cut of the wake at x NN 4 are drawn in figures 10(b) and lO(c). 

One clearly sees that u(y) is a symmetric function of y (the flow is still essentially 
symmetric!). For y > 0 (y < 0) u(y) is a monotonically increasing (decreasing) 
function of y with an inflection point at y = y* (y = -y*), y' NN 0.06. At y = y' 
(y = -y*) the absolute value of the vorticity has a maximum. The monotonicity of 
u(y) and the shape of o = du/dy ensure that the conditions 

= O  d2U(Y) d2U(y) [u(y) - u(y*)] d 0, y = y' - - 
dY2 dY 

(4.1 ) 

are satisfied for all y in the wake of the cylinder. Such conditions are sufficient to 
argue the instability of an incompressible, plane, symmetric flow, see Drazin & Reid 
(1981, Chap. 22). The flow at M ,  = 0.85 is clearly compressible. Notice, however, that 
the compressibility effects only affect the inertial terms because the basic plane flow 
is, by definition, divergence free: u = u(y), u = 0 5 V-u = 0. Thus if dp(y)/dy/p(y) 
is sufficiently small, the results of the linearized stability analysis of incompressible 
plane flows can be used to argue the instability of the compressible ff ow in the wake of 
the cylinder at M ,  = 0.85. This instability, and the related breakdown of symmetry, 
can be observed in figure 9(f-h). 

At t NN 28.5 a first disturbance becomes visible in the middle of the wake. In 
the two layers on the upper and lower sides of the wake the self-induced motion 
of the vorticity (see Batchelor 1967, pp. 511-517) leads to its concentration around 
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asymmetrical kernels (because of the different sign of o in the two layers) and to a 
rapid growth of the curvature of the wake. 

At t = 30 the disturbance has reached the rear part of the cylinder and begins 
to interact with the radial shocks. The upper shock is pushed ahead of its previous 
equilibrium position and weakens. The lower shock is pulled back and strengthens 
(figure 9h). The vortex on the upper rear part of the cylinder is about to be shed into 
the wake. This re-enforces the asymmetry of the wake and the process goes on. After 
a while an unsteady asymmetric flow is established. An instantaneous picture of this 
flow is shown in figure 1. The investigation of this flow at large times is the subject 
of the next section. 

4.4. Large times 

The behaviour of the flow about the circular cylinder at large times depends qual- 
itatively on the value of M,. Consider figures 11, 12 and 13. On the left side the 
drag coefficient, CD, has been plotted against the time, t, for t E [0,300]. On the 
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FIGURE 12. Circular cylinder at (a) M,  = 0.65, ( b )  M ,  = 0.7, (c) M,  = 0.75 and ( d )  M ,  = 0.8 
drag coefficient diagrams for t E [O, 3001 and spectra for t E [200,600]. 

right the Fourier spectra of the Co diagrams for t E [200,600] are shown. This time 
interval is chosen in order to analyse the behaviour of the flow at large times. All 
the computations have been made with the mesh D1 (64 x 256 cells) and with the 
perturbed initial data. 

Figures 11, 12 and 13 clearly show that the breakdown of symmetry is germane to 
the whole transonic range: in this range of velocities the symmetric solution is always 
unstable. Thus the introduction of time scales to study the behaviour of transonic 
flow is natural as claimed in 94.1. 

The analysis of figures 11, 12 and 13 indicates that the flow undergoes, as M ,  
grows from 0.5 up to 1, two other transitions besides the first one, occurring at M g ,  
described in 92, see table 1. A first one, occurring at Mgl, leads to the breakdown 
of the periodic asymmetric flow and to the onset of a chaotic flow. With a second 
transition, at M z ,  the chaotic flow returns to a quasi-steady regime. By quasi-steady 
I mean here a periodic flow characterized by an oscillation of low amplitude and high 
frequency, see figure 13(b-d). The values of M g l  and M z  seem to be about 0.6 and 
0.9, respectively. 
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FIGURE 13. Circular cylinder at (a) M,  = 0.85, (b) M ,  = 0.9, (c )  M,  = 0.95 and ( d )  M ,  = 0.98: 

drag coefficient diagrams for t E [0,300] and spectra for t E [200,600]. 

The comparison of the spectra at M ,  = 0.55, M ,  = 0.6 and M ,  = 0.65 also 
seems to indicate that the transition to a chaotic flow is smooth, in the sense that 
a quasi-periodic flow (or actually a family of quasi-periodic flows, corresponding to 
some M ,  interval) appears between the periodic and the chaotic regimes. This is the 
flow at M ,  = 0.6. On the other hand the transition chaotic -+ quasi-steady, occurring 
at M ,  = Mg2, seems to be sharper. 

The scenario sketched above can also be recognized in figures 14, 15 and 16 
where the results of the same computations are presented in terms of lift coefficient 
diagrams and spectra. Of particular interest is the fact that the transition chaotic -+ 
quasi-steady is accompanied by a sudden increase of the Strouhal number, a fact well 
known from experiments (figure 17). The Strouhal number is a frequency (the main 
frequency of the CL oscillation) times a reference time Trcf  (T,,f = Lrcf/(a,M,), Lref 
is the diameter of the cylinder). For the case M ,  = 0.98, for instance, the computed 
Strouhal number is 0.44. Dyment (1979) reports, for the flow at M ,  = 0.98 and 
Re, = lo5, a measured Strouhal number of about 0.42. Notice that, for M ,  < M,"z, 
the values of the computed Strouhal number are about 0.2 (without any significant 
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FIGURE 14. Circular cylinder at (a) M ,  = 0.38, (b)  M ,  = 0.5, ( c )  M,  = 0.55 and (d)  M, = 0.6: lift 
coefficient diagrams for t E [0,300] and spectra for t E [200,600]. 

dependency on M,). This is also in very good agreement with experimental data 
at high Reynolds number. The experimental results reported in Dyment (1979), 
however, seem to indicate a value of M z  between 0.95 and 0.98 (at Re, w lo5), 
quite different from the value 0.9 indicated by the inviscid computations. This is not 
surprising since there is no reason why M z  (and Mgl as well) should not depend on 
the Reynolds number. In the rest of this section I will present some numerical results 
that indirectly confirm such a dependency by showing that the value of M z  depends, 
in the inviscid computations, on the roughness of the grid, i.e. on the amount of 
numerical dissipation introduced by the discretization. 

A more impressive representation of the behaviour of the flow at large times with 
respect to its dependence on M ,  is given in figure 18 where CD, CL diagrams over the 
time interval [200,600] (the same interval used for the Fourier analysis) are drawn. 
One can clearly see how the fix-point at M ,  = 0.38 suddenly turns into a closed 
orbit (the periodic flow at M ,  = 0.5,0.55) and then degenerates into a closed band 
(Moo = 0.6) and, at higher M,, into a more complex object ( M ,  = 0.65 to M ,  = 0.85). 
Notice also the clearness of the second transition between M ,  = 0.85 and M ,  = 0.9. 
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coefficient diagrams for t E [0,300] and spectra for t E [200,600]. 

The numerical results described above can be summarized in table 2 which extends 
the observations sketched in table 1. The classification introduced with table 2 
deserves some explanations. The terms stable, unstable and chaotic have been used 
in the following, contextual sense. For M ,  c M," stable means not depending 
qualitatively on the initial condition and on the space and time discretization. The 
term unstable appears, in table 2, only for M ,  > M g .  It is used to label the flow which 
is obtained by starting the numerical integration with the symmetric (unperturbed) 
initial condition. This is the flow which also has been referred to as the flow about 
a half-cylinder in $2 and $3. Thus unstable and symmetric always go together in 
table 2 and represent the non-relevant branch of the flow. The other branch, obtained 
with the perturbed initial condition described in $3, has been labelled either stable or 
chaotic. For M ,  > M," stable is used to characterize a flow which does not depend 
qualitatively on the discretization. For such flows no dependence on the kind of 
asymmetrically perturbed initial condition or on the size of the perturbation has been 
observed at large times. On the other hand, the term chaotic is used to characterize a 
flow which exhibits sensitivity to the choice of the discretization. 
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FIGURE 17. Circular cylinder: Strouhal number versus Mm. 

To make clear the above definitions and give evidence for the claims outlined in 
table 2, let me give a few examples of stable and chaotic flows. Consider the flow at 
M ,  = 0.5 again. The results of two computations, made with 32 x 128 (a) and with 
64 x 256 (b) cells are represented in figure 19 in terms of drag coefficient diagrams 
and spectra. The agreement between the two computations is very good both in the 
form of the CD diagram and in the main frequencies. 
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FIGURE 18. Circular cylinder at M ,  = 0.38 to M ,  = 0.98: CO, CL diagrams for t E [200,600]. 
Enlargement of the diagrams at M,  = 0.9, 0.95 and 0.98 reveal regular flow patterns: one such 
enlargement (Moo = 0.9) is shown in figure 27(f). 

The same can be said of the results obtained for the flow at M ,  = 0.95, reported 
in figure 20. Here the lift coefficient has been shown because in this case the 
difference between the two computations is more perceivable in this variable. The 
same agreement shown in figures 19 and 20 has been found, for M," < M ,  < M,"' and 
for M z 2  < M ,  < 1, between computations made on the same grid but with different 
time discretizations or with different initial conditions, by starting the computation 
with a slightly perturbed potential solution, for instance, or between computations 
made with different numerical techniques. To give an idea of the stability of the 
asymmetric periodic flow at M ,  = 0.5 the reader can compare the results shown in 
figure 19 with those reported in figure 5 of Pandolfi & Larocca (1989). Therefore 
such flows are called stable in table 2. 

Let me now turn the attention to the flows at M ,  between M z  and M,"2. Such flows 
are claimed to be chaotic in table 2. Some characteristic features of such flows are: 

(i) critical sensitivity to the discretization; 
(ii) strong vortex-shock and vortex-vortex interactions ; 
(iii) irregular, apparently aperiodic and erratic behaviour ( CD,  CL diagrams). 
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M,  < M," 
M," < M ,  < M;' 

Mz1 < M ,  < M Z  

M,"~ < M ,  < 1 

0 steady, symmetric, stable 
o steady or periodic, symmetric, unstable 
0 periodic, asymmetric, stable 
o steady or periodic, symmetric, unstable 
0 unsteady, asymmetric, chaotic 
o steady or periodic, symmetric, unstable 
0 quasi-steady, quasi-symmetric, stable 

TABLE 2. The dependence of the behaviour of the flow about a circular 
cylinder dependence on the control parameter M,. 
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FIGURE 19. Circular cylinder at M ,  = 0.5: computation with (a) 32 x 128 and with 
(b)  64 x 256 cells; drag coefficient diagrams and spectra. 

t t-1 

To illustrate (i) consider figure 21. For the flow at M ,  = 0.85 the lift coefficient 
diagrams and spectra obtained with 32 x 128 (a), 64 x 256 (b)  and 128 x 512 (c) 
cells are shown. The results are quite different from the ones discussed above. For 
each grid a quite different CL diagram has been obtained. Notice also that, as the 
grid is refined, the CL is shaped by two basic oscillations: one with bigger amplitude 
and lower frequency and another one with small amplitude and higher frequency 
(figure 21c). I will come back to this point at the end of this section. 

Another example of the qualitative dependence of the solution on the mesh size is 
given in figure 22. In part (a)  the drag coefficient diagrams and spectra of the flow 
at M ,  = 0.9 are reported for a computation made on a discretization of 32 x 128 
cells. In (b )  the same quantities are shown for the same flow computed, this time, on 
a mesh consisting of 64 x 256 cells. The difference is striking. In the first case the 
flow is wildly oscillating, in the second almost stationary. This difference should not, 
however, be surprising. The flow at M ,  = 0.9 is at the border between the chaotic 
range and the range of quasi-steady, stable flows (remember that I claimed M z  to 
be about 0.9) and is precisely the qualitative difference between these two regimes 
that allows one to speak of a transition and of a critical value of M,. The point is, 
however, that the numerical solution may be either chaotic or quasi-steady not only 
in its dependence on the M ,  but, as figure 22 clearly shows, also on the roughness of 
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FIGURE 21. Circular cylinder at M ,  = 0.85: computation with (a) 32 x 128, ( b )  64 x 256 and 
(c) 128 x 512 cells; lift coefficient diagrams and spectra. 

the grid, i.e. on the amount of numerical dissipation (artificial viscosity) introduced by 
the discretization (see also $4.4). The average of the drag coefficient over the interval 
[200,600] is about 1.6 for the computation made with 32 cells and above 2 for the 
computation made with the finer grid. Thus the higher value of the drag coefficient, 
corresponding to the quasi-steady flow, is obtained with the finer grid, i.e. with a 
more accurate and less dissipative computation! This remark, together with that in 
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FIGURE 22. Circular cylinder at M ,  = 0.9: computation with (a)  32 x 128 and with 
( b )  64 x 256 cells; drag coefficient diagrams and spectra. 

$4.4 and in the previous paragraph suggest that the role of dissipation in presence of 
bifurcations might be quite subtle, see $4.5. 

The differences between the flows obtained with the coarse and with the fine meshes 
are also evident in the lift coefficient diagrams (not shown here). In the chaotic case 
the amplitude of the C, oscillation is about four times bigger than the amplitude 
obtained with the fine grid. This difference can also be clearly seen in figure 23 
where the instantaneous contour lines of the pressure coefficient are shown for the 
two computations. Notice that the flow in (b) (64 x 256) is structurally very similar 
(shock position and shape, form of the wake) to the flow shown on figure 24(b), at 
M ,  = 0.95 and again computed with a mesh of 64 x 256 cells. I will come back to 
this remark in $4.5. 

Let me now turn the attention to the second topic which characterizes the flow 
at M ,  between Mgl and M g 2 :  the interactions between vortices and shocks and 
between vortices themselves. Vortex-shock interaction is here understood as the 
process leading to the formation of secondary shocks which are generated in the 
velocity$eld induced by the vorticity created by the primary radial shocks. Such a 
process is well illustrated in figure 25. This is an instantaneous picture of the flow 
at the rear part of the cylinder at M ,  = 0.85. The computation has been made on 
the finest grid (128 x 512 cells) and both the primary and the secondary shocks are 
well resolved. On figure 25(a) four radial shocks and one circumferential shock can 
be recognized. The primary ones, Y,I and Yr2, are generated by the re-compression 
of the flow about the cylinder. Since the intensity of these shocks varies between 
root and tip, entropy gradients are generated downstream according to the Rankine- 
Hugoniot relationships. Entropy gradients are a source of vorticity which, in turn, 
induces a strong reversed flow. This can be clearly seen on figure 25(b). The secondary 
shocks Ye, Yr3 and Yr4 form as the reversed flow re-compresses to comply with the 
boundary condition (Yc) or with the primary flow (Yr3) and ( Y r 4 ) .  

The whole process can be described as a sort of discrete energy cascade in which 
the radial shocks play a twofold role: through each radial shock a certain amount of 
kinetic energy is dissipated and the rest is transferred into smaller eddies. 

Another feature of the flow in the chaotic range is the appearance of aperiodic 
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FIGURE 23. Circular cylinder at M ,  = 0.9: computation with (a) 32 x 128 and with 
(b) 64 x 256 cells; pressure coefficient contour lines. 

FIGURE 24. Circular cylinder at (a) Mm = 0.55 and at (b)  M ,  = 0.95: computations 
with 64 x 256 cells; pressure coefficient contour lines. 

vortex pairing in the wake of the cylinder. This is due to the fact that vortices of 
different size and intensity are shed at uneven time instants. Therefore the ones which 
are travelling downwards at a slower pace are reached by and merge with the faster 
ones. This can be seen in the sequence of frames of figure 26 again for the flow at 
M ,  = 0.85. 

Let me now discuss item (iii), namely the irregular, apparently aperiodic behaviour 
of the flow at M ,  between Mzl and M z 2 .  Such irregularity can be clearly seen in 
figures 11 to 13 and, in particular, in the CD, CL representation of figure 18. To better 
understand the nature of the irregularity, let me focus attention on a particular flow, 
the one at M ,  = 0.85. This flow has been the subject of a more detailed numerical 
investigation, consisting of computations on a 32 x 128, on a 64 x 256 and on a 
128 x 512 grid and carried out over a long time interval. With the grids of 32 x 128 
and of 64 x 256 cells the numerical integration has been carried out till t about 1000. 
Some of the results of these computations have already been shown, see for instance 
figure 21. 

The results of the numerical integration made with the finest mesh of 128 x 512 
cells have been post-processed to obtain a motion picture of the flow over the first 
150 s of the time integration. The analysis of the motion picture and of the CL 
and CD diagrams over a larger interval of time clearly show that the flow wanders 
between two qualitatively different configurations. This possibility has already been 
argued in the analysis of the CL diagrams of figure 21. One of these configuration is 
shown on figure 27(a). It is structurally very similar to a typical periodic, asymmetric 
stable flow at < M,  < Mzl like the one represented on figure 24(a). This flow 
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FIGURE 25. Circular cylinder at M ,  = 0.85: computations with 128 x 512 cells; 
(a) pressure coefficient contour lines and (b )  velocity field. 
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FIGURE 26. Circular cylinder at Mm = 0.85: vortex pairing in the wake; 
entropy deviation contour lines. 

has been computed on a 64 x 256 grid, however. Therefore both the shock and the 
vortices in the wake are less resohed than in the M ,  = 0.85 flow of figure 27. The 
other configuration, represented on figure 27(b), is similar to a typical quasi-steady, 
quasi-symmetric stable flow at M Z  < M ,  < 1 like the one on of figure 24(b). 

Therefore the chaotic flow at M ,  = 0.85 seems to have, during well defined time 
intervals, the features of two qualitatively different structurally stable regimes but to 
be unable to realize stably either one or the other. This numerical result is therefore 
in agreement with the experimental results obtained by A. Dyment for the flow about 
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FIGURE 27. Circular cylinder at M ,  = 0.85: the flow at large times wanders between two 
qualitatively different configurations; 128 x 512 cells. (a, b) Pressure coefficient contour lines; (c-f) 
CD, CL diagrams. 

the circular cylinder at M ,  = 0.8 and Re about lo5 mentioned in the introduction. 
This can also be seen in the CD, CL diagrams reported in figure 27(c-f). Here the 
points B and C in the CD, CL diagram of the flow at M, = 0.85 correspond to the 
states of the flow represented on figure 27(a, b): point B (low drag, wide oscillation) 
corresponds to (a), point C to (b). The dots represent the state of the flow at some 
previous or later time. The CD, CL diagrams should be seen as a rough attempt to 
introduce some representation of the state of the flow. Notice that this is not a trivial 
problem since the phase space is an infinite-dimensional space. For comparison the 
CD, Ct  diagrams of the flows at M ,  = 0.55 and M ,  = 0.9 (two instantaneous pictures 
of such flows can be found in figure 24) are also shown: notice the regularity of 
the patterns in the enlargement of the CD, CL diagram of the flow at M ,  = 0.9 on 
figure 27(f). 

4.5. A numerical conjecture 
In the previous sections numerical solutions of inviscid transonic flows about the 
cylinder have been presented and discussed. 
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RCURE 28. Circular cylinder: numerical conjecture upon the dependence of the flow on M,. 

These computations are, for M ,  between 0.38 and 0.5, in very good agreement with 
the results presented in Pandolfi & Larocca (1989). The same computations show, at 
higher M,, some new interesting features. Some are listed below: 

(i) the appearance of transitions, periodic + chaotic and chaotic + quasi-steady, 
at MzL and Mz2 respectively (figure 18, table 2); 

(ii) the role of dissipation in presence of the bifurcation at M Z  (figure 23 and 

(iii) the irregular behaviour of the numerical solution at M ,  = 0.85, wandering 
between two different regimes (figure 27). 
These peculiarities of the numerical solution can be used to formulate the following 
numerical conjecture upon the dependence of the Euler flow about the cylinder on 
the Mach number. The conjecture is illustrated in figure 28. In this picture d stands 
for some measure of the asymmetry of the flow: the amplitude of the C,  oscillation, 
for instance. The solid lines represent stable, the dashed lines unstable solutions. In 
the vicinity of M z  the thin lines represent two basic kinds of bifurcation which may 
characterize the transition from the subsonic to the transonic regime. 

CONJECTURE 4.1. For M ,  < M S  a symmetric steady solution, A ,  exists. A is stable. 
At M z  a bifurcation occurs: A becomes unstable and an asymmetric periodic solution, 

B, appears. B is stable. 
At MZl a second bifurcation occurs: B becomes locally unstable and another solution, 

C,  appears. C is locally unstable. 
At M,"z an inverse bifurcation occurs: B disappears and C becomes stable; C is the 

quasi-steady, quasi-symmetricjlow which is stable for M Z  < M ,  < 1. 

Conjecture 4.1 clearly accounts for the numerical results described in the previous 
sections and, in particular, for the items listed above. 

Thus the role of (numerical) dissipation at Mach numbers about M,"' is a con- 
sequence of the co-existence, in the chaotic range, of two locally unstable solutions, 
B and C. (A locally unstable solution is a solution which attracts the flow outside 
of a small neighborhood of itself.) The amount of dissipation selects whether C is 
stable or not. In the first case a quasi-steady, quasi-symmetric solution, like the one 
reported on the right of figure 23, is computed. In the second case the flow wanders 
between the solutions B and C just like the chaotic flow at M ,  = 0.85. 

§4.4) ; 

5. Conclusions 
The inviscid transonic flow about a circular cylinder has been investigated numer- 

ically. The computations confirm well established results for Mach numbers in the 
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low transonic range. At higher Mach number new phenomena have been found. 
In particular the transition to a chaotic, turbulent regime and, from this, back to a 
quasi-steady flow have been observed at Mzl and at M z ,  respectively. The behaviour 
of the numerical solution both in the chaotic and in the quasi-steady regimes is in 
agreement with experimental results of flows at high Reynolds number. 

A numerical conjecture upon the dependence of the flow on M ,  has been ad- 
vanced. 

A better understanding of the transonic flow about the cylinder requires a deeper 
investigation of the behaviour of the flow in the vicinity of bifurcations and in the 
chaotic range. 

As final remark I would like to stress something which is obvious: the numerical 
results discussed in the previous sections must not be taken as a substitute for 
a rigorous analytical investigation. This is because of at least two reasons. The 
first reason is that there is no assurance that the high-resolution method provides 
numerical approximations that converge, as the size of the discretization goes to zero, 
toward solutions of the continuous problem. The second reason is that there is no 
certainty that the implementation of the method is correct. These two facts explain 
the effort which has been undertaken, in Botta (1994), to validate the code and to 
critically look for possible inconsistencies between numerical results and governing 
equations. It is this validation work which gives confidence that the behaviour of 
the numerical solutions described in this paper is not just a spurious feature of the 
method or of its implementation. 

I would like to thank Professor R. Jeltsch (ETH Zurich, Switzerland) and Professor 
M. Pandolfi (Politecnico di Torino, Italy) for the helpful discussions. This work has 
been done at the Seminar of Applied Mathematics of the ETH Zurich. 
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